
Hindawi Publishing Corporation
International Journal of Digital Multimedia Broadcasting
Volume 2008, Article ID 835438, 12 pages
doi:10.1155/2008/835438

Research Article
Context-Aware UPnP-AV Services for Adaptive
Home Multimedia Systems

Roland Tusch, Michael Jakab, Julius Köpke, Armin Krätschmer, Michael Kropfberger,
Sigrid Kuchler, Michael Ofner, Hermann Hellwagner, and Laszlo Böszörmenyi

M3-Systems Research Laboratory, Institute of Information Technology, University of Klagenfurt, 9020 Klagenfurt, Austria

Correspondence should be addressed to Roland Tusch, roland.tusch@m3-systems.com

Received 25 June 2008; Accepted 15 July 2008

Recommended by Harald Kosch

One possibility to provide mobile multimedia in domestic multimedia systems is the use of Universal Plug and Play Audio Visual
(UPnP-AV) devices. In a standard UPnP-AV scenario, multimedia content provided by a Media Server device is streamed to Media
Renderer devices by the initiation of a Control Point. However, there is no provisioning of context-aware multimedia content
customization. This paper presents an enhancement of standard UPnP-AV services for home multimedia environments regarding
context awareness. It comes up with context profile definitions, shows how this context information can be queried from the
Media Renderers, and illustrates how a Control Point can use this information to tailor a media stream from the Media Server
to one or more Media Renderers. Moreover, since a standard Control Point implementation only queries one Media Server at a
time, there is no global view on the content of all Media Servers in the UPnP-AV network. This paper also presents an approach of
multimedia content integration on the Media Server side that provides fast search for content on the network. Finally, a number
of performance measurements show the overhead costs of our enhancements to UPnP-AV in order to achieve the benefits.

Copyright © 2008 Roland Tusch et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

During the last 25 years, a number of digital audio and
video broadcasting standards and systems for large-scale
broadcast scenarios have been developed. Some of these
standards are Digital Audio Broadcasting (DAB) and its
successor DAB+ for digital audio transmissions [1], South
Korea’s DAB-based Digital Multimedia Broadcasting (DMB)
for broadcasting multimedia data to mobile devices [2],
and the complete suite of Digital Video Broadcasting (DVB)
standards [3, 4]. Similar to DMB, DVB also specified its own
transmission system for handheld terminals entitled DVB-
H [5]. Moreover, the DVB suite also includes a set of Java-
based open middle-ware specifications for interactive digital
television, called the DVB Multimedia Home Platform (DVB-
MHP) [6]. DVB-MHP is designed to work across all DVB
transmission technologies and requires an additional return
channel for each interactive TV application.

However, such broadcast systems are usually not appli-
cable to small-scale environments like single-site home
entertainment systems for the following two reasons. First,

multimedia broadcasting to mobile devices in a domestic
multimedia environment is not economical, since the infor-
mation coverage area usually is simply too small. Second,
in a home multimedia environment, maybe some but not
all users are usually interested in the same content at the
same time. These reasons result more in the need for
multimedia unicasting and multicasting than for multimedia
broadcasting in domestic multimedia systems. Therefore,
for home multimedia environments, the widely accepted
Universal Plug and Play Audio Visual (UPnP-AV) [7, 8]
standard may be of interest, which is an extension of the
original Universal Plug and Play (UPnP) [9] standard.

While UPnP enables automatic discovery of common
devices and services in a local area network, UPnP-AV
deals with multimedia devices and especially multimedia
content. UPnP-AV specifies device and service descriptions
for Media Servers and Media Renderers, which represent
multimedia sources and multimedia sinks, respectively. In
between these two device classes, a control point acts as
a dispatcher of multimedia content. Metadata about the
available multimedia content is provided to the Control

mailto:roland.tusch@m3-systems.com


2 International Journal of Digital Multimedia Broadcasting

Point via the Media Server’s Content Directory Service (CDS).
The Control Point queries the CDS for the desired content
and initiates the playback of the appropriate streams on a
Media Renderer, which in turn is responsible for the correct
decoding and rendering of the streams.

However, today’s UPnP-AV implementations have two
major drawbacks which make their use difficult in a
heterogenous home multimedia environment with several
Media Servers and many different Media Renderers. First,
standard Control Point implementations only query one
Media Server at a time. If there is a larger number of Media
Servers in the local area network, there is no global view
on the content of all Media Servers in the network. This
makes a search for specific content very difficult. Typically,
the search is performed by browsing the content directories
of all Media Servers. Second, the multimedia content must
be consumed by the Media Renderers as provided by the
Media Servers. There is no provisioning for customization
of the media content to the capabilities of a Media Renderer
device. A typical workaround to this problem in most UPnP-
AV implementations is that if a Media Renderer is not able to
render a specific format, the rendering of the stream can not
be initiated at the Control Point.

This paper addresses these two drawbacks of today’s
UPnP-AV implementations. In Section 2, the notion of Usage
Context for customizing multimedia content to different
profiles like user and device profiles is introduced. Section 3
presents our Integrating Media Server which integrates
multimedia metadata from all available Media Servers in
the local network. Our extensible Context-aware Media
Renderer is presented in Section 4. In Section 5, the internal
behavior of our Context-aware Control Point is described
by an example of a control and data flow. Section 6 comes
up with performance evaluations of the Integrating Media
Server and Context-aware Media Renderer implementations.
Finally, Section 7 concludes the contribution of this paper
to context-aware provisioning of mobile multimedia in
domestic multimedia systems.

2. THE NOTION OF USAGE CONTEXT

Customization of multimedia content in multicasting or
broadcasting systems is not an easy task, since multicasting
implies that the delivered data is to be consumed by a num-
ber of consumers simultaneously, whereas personalization
is rather a powerful content adaptation method for unicast
content delivery scenarios. The usual goal of personalization
is to deliver a customized version of multimedia content for
exactly one consumer. However, there are already approaches
of multimedia personalization in large-scale environments
like 3DTV and terrestrial DMB (T-DMB), which are mainly
based on multiview video and multichannel audio broad-
casting techniques [10, 11]. Currently, these approaches
are limited to adapting the content according to specific
user profiles (i.e., the language, age, or interests of the
consumers).

However, in mobile multimedia systems, customization
is not limited to the user profile only. besides, the user
profile, there are several other profiles which may also

Usage Context

User Profile

Device Profile

Network Profile

Location Profile

Time Profile

Ambient Profile

Visitor Profile

Figure 1: General usage context model for our context-aware
multimedia services.

require an adaptation of the multimedia content. Especially
in environments with a number of different mobile devices,
additional constraints to the content delivery are imposed,
for example, by the terminal and location profiles [12].
The terminal capabilities and the current location of the
consumer device play an important role in distributed
mobile multimedia systems.

To cope with all relevant profiles for multimedia content
tailoring, we introduced the notion of Usage Context. The
following two subsections provide an overview of our usage
context profiles, and of the three possibilities to add context
awareness to UPnP-AV.

2.1. Usage context profiles

Basically, a universal set of context profiles that is valid
for all application areas does not exist, since context is
always an issue of the interaction between a user and an
application [13]. For example, in a small-scale UPnP-AV-
based home multimedia environment, it may not be relevant
which content the user consumed at what time. However, in a
large-scale multimedia tour guide environment as described
in [14] this information is definitively of interest to the
system provider, since the content consumption history
affects possible content demand in the future.

In general, there are three aspects of context which
are valid for all application areas: (i) where you are, (ii)
who you are with, and (iii) what resources are nearby
[15]. For multimedia applications, these aspects have already
been addressed in the MPEG-21 Digital Item Adaptation
standard by the means of Usage Environment Descriptions
[16–18]. For ubiquitous mobile devices like mobile phones,
the User Agent Profile (UAProf) [19] has been developed as
a de facto standard for describing the resource aspect (i.e.,
the Device Profile). Moreover, UAProf also describes the
preferences aspect, since it is based on the Composite Capa-
bility/Preference Profiles (CC/PP) [20] vocabulary extension
of the Resource Description Framework (RDF) [21].

However, neither the MPEG-21 DIA’s Usage Environ-
ment nor the CC/PP-based UAProf profiles contain sufficient
information regarding the context profiles needed by our
context-aware application domains, including the context-
aware UPnP-AV services and the context-aware large-scale
tour guide application [14]. Thus, we derived an own



Roland Tusch et al. 3

Device Profile

Hardware
Profile

Software
Profile

Model info

Screen

Audio output

Text input

Voice input

Pointing device

Storages

Power
characteristics

Java
capabilities

OS capabilities

Operating
system

Codecs

Figure 2: The Device Profile as a composition of Hardware and
Software profiles.

context model for our context-aware multimedia services.
An overview of this XML Schema-based model is given in
Figure 1.

Basically, this context model includes the four profiles
User, Device, Network, and Location Profile. These profiles are
required for all of our application domains and represent the
four profiles needed by the context-aware UPnP-AV services.
The User Profile collects data about the characteristics of the
user like preferred language, age, interests, and presentation
preferences (like audio only and video only for handicapped
persons, or mixed). The Device Profile delivers information
about the hardware and software properties of the consumer
device (see Figure 2). For context-aware UPnP-AV services,
the Device Profile is one of the most important profiles for
content adaptation.

The Network Profile gathers data about available net-
works including average bit rate, reliability, latency, and
transmission costs. And the Location Profile provides infor-
mation about the current location of the consumer device,
according to the used localization technique [22]. For
context-aware UPnP-AV services in domestic multime-
dia environments, localization techniques using Bluetooth
and/or Radio Frequency ID (RFID) technology are suitable.

In addition to these four basic profiles, three further
profiles (Time, Ambient, and Visitor Profiles) are required for
our large-scale multimedia tour guide application. They are
not used by the context-aware UPnP-AV services, but for the
sake of application-domain comparison they are mentioned
here. The Time Profile tracks the current system time of
the content consumption. Current environmental conditions
including weather, temperature, and air conditions are
collected by the Ambient Profile. And finally, the Visitor Profile
tracks the content consumption history of a tourist, as well
as the data about her/his vacation, such as location, date of
arrival, date of departure, and number of persons.

2.2. Adding context awareness to UPnP-AV

As mentioned in Section 1, one major drawback of the
UPnP-AV specification is that the multimedia content must
be consumed by the Media Renderers as provided by the
Media Servers. The only adaptation step existing Control
Point implementations typically perform is to avoid the
rendering of a Media Server’s media stream on a Media
Renderer if the renderer is not able to deal with the coding
format of the stream or if the renderer does not support any
provided transport protocol of the Media Server.

To overcome this drawback, two improvements can be
added to UPnP-AV services. First, the Media Renderer can be
extended with means for querying the current usage context
(see previous Section 2.1) on the renderer device. Second,
the Control Point may incorporate a content transcoding
application, which adapts a Media Server’s media stream to
a given usage context, before the content is delivered to the
Media Renderer.

Basically, there are three possibilities to enhance a stan-
dard UPnP-AV Media Renderer with context provisioning
[23]. First, a selected service of the Media Renderer can be
extended by an additional action which returns the current
context information. An enhanced Control Point may then
call this action to acquire the desired information. Second, a
selected service of the Media Renderer can be extended with a
set of state variables describing the context. A Control Point
may query these variables to acquire the context via UPnP-
AV’s eventing mechanism. And third, the Media Renderer
can be extended with a new service which encapsulates the
aforementioned variables, provides actions to query them
and offers eventing for the notification of value changes to
these variables.

All three possibilities have their advantages and dis-
advantages. Our decision to extend the Media Renderer’s
Connection Manager service by an additional GetContextInfo
action is described in Section 4. The Control Point’s usage of
the context data for customizing a media stream is presented
in Section 5.

3. THE INTEGRATING MEDIA SERVER

To overcome the first drawback of standard UPnP-AV
mentioned in Section 1, an Integrating UPnP-AV Media
Server was implemented [24]. Figure 3 illustrates the steps
undertaken to integrate multimedia metadata from n UPnP-
AV Media Servers in the network.

When a Media Server starts up, it first fills its own Content
Directory with metadata obtained from locally available mul-
timedia sources (i.e., files from the file system or live sources).
The gathered metadata is then provided to a Control Point
via the Media Server’s Content Directory Service (CDS). In
the next step, the Integrating Media Server browses the CDS
of each detected Media Server, and integrates its metadata
into its own CDS. In order to be able to connect to other
Media Servers, the Integrating Media Server implements its
own Control Point, which listens to arrivals and departures
of Media Servers in the UPnP-AV network, and performs
metadata integration or segregation steps, respectively.



4 International Journal of Digital Multimedia Broadcasting

File
system/

live
sources

Music
Albums

All tracks
Artist 1-track 1
Artist 2-track 1
Artist 3-track 1

Genres
Videos

CDS

Media
data

Meta
data

Media Server 1

Built from

· · ·

File
system/

live
sources

Music
Albums

A1(artist 1)-track 1
A1(artist 1)-track 2
A1(artist 1)-track 3
All tracks
Genres

Videos

CDS

Media
data

Meta
data

Media Server n

Built from

Music
Artists

Artist 1-track 1
Artist 1-track 2
Artist 1-track 3
Artist 2-track 1
Artist 3-track 1

Videos

CDS

Integrated
meta data

Integrating
Media Server
(MediaTomb)

CDS::Browse

C
D

S:
:B

ro
w

se

Figure 3: Metadata integration from UPnP-AV Media Servers.

UPnP-AV
Control Point

UPnP-AV
Media Server

Player
wrapper

UPnP actions

UPnP-AV
Media Renderer

Out-of-band
transfer protocol

AV Transport

Rendering Control

Connection Manager

VLC MPlayer · · ·

Figure 4: Conceptual view on the generic UPnP-AV Media Renderer architecture.

Integrating metadata views from a remote Media Server
does not simply mean an exact import of them to the local
CDS. While the latter approach is also known as metadata
mirroring [25], metadata integration enhances metadata
mirroring by reorganizing the mirrored metadata into one
unified view [24]. For example, in Figure 3 the metadata view
All Tracks on Media Server 1 and the metadata view Albums
on Media Server n are integrated to a metadata view Artists
on the Integrating Media Server.

The multimedia data itself remains on the origin Media
Servers and is referenced as a resource in DIDL-Lite-based
media item descriptions. DIDL-Lite [26] is a subset of
MPEG-21’s Digital Item Declaration Language (DIDL) [27]
used in UPnP-AV. It is also based on XML as DIDL, but its
schema restricts the possible metadata fields to the UPnP
and Dublin Core [28] namespaces. Algorithm 1 shows an
example DIDL-Lite response of Media Server 1 to a Browse
action call of the Integrating Media Server’s Control Point.



Roland Tusch et al. 5

<DIDL-Lite>

<container id=“100” parentID=“10”

childCount=“3” restricted=“1”>

<dc:title>All Tracks</dc:title>

<upnp:class>

object.container.musicContainer

</upnp:class>

</container>

<item id=“101” parentID=“100” restricted=“1”>

<dc:title>Dancing Queen</dc:title>

<upnp:artist>Abba</upnp:artist>

<upnp:album>Arrival</upnp:album>

<upnp:genre>Pop</upnp:genre>

<res size=“3482846” duration=“0:03:52.110”

protocolInfo=“http-get:∗:audio/mpeg:∗” >

http://192.168.1.5:9001/disk/101.mp3</res>

<upnp:class>

object.item.audioItem.musicTrack

</upnp:class>

</item>

</DIDL-Lite>

Algorithm 1: An example media item description.

Media Server

Media
Renderer

Content Directory
service

AV Transport
service

Connection
Manager service

TMCControl Point
Adaptation

engine

TMC capabilities

AVT:SetAVTransportURI(URL)

Item metadata· · ·· · ·
URL

Context
CM::GetProtocolInfo()
>Protocol/Format List
CM::GetContextInfo()
>Context

Static/preferenced
profiles

Rendering
Control service

AV Transport
service

Connection
Manager service

1

2

3

4

5

6

7

Figure 5: Action call sequence of the Context-aware UPnP-AV Control Point.



6 International Journal of Digital Multimedia Broadcasting

The res element provides information about the media item’s
encoding properties, as well as the URL to use for requesting
the media item.

For the implementation of the Integrating Media Server,
the open source UPnP-AV Media Server MediaTomb [29] and
the open source UPnP-AV stack libupnp [30] were used.

The presented approach of metadata integration brings
two major advancements for Control Points compared to
standard UPnP-AV. First, the Integrating Media Server can
easily implement the optional Search action to enable a
Control Point to query the integrated view of metadata
for certain multimedia content, even though some Media
Servers do not implement this action themselves. And sec-
ond, the integration step allows to reorganize the metadata
in customizable views to customize the multimedia content
provisioning according to the profiles of the Usage Context.

4. THE CONTEXT-AWARE MEDIA RENDERER

The architecture of our context-aware UPnP-AV Media
Renderer is kept generic in order to be able to use any
existing UPnP or non-UPnP enabled media player as media
renderer [31]. Figure 4 provides a conceptual view on this
architecture. Existing media players like the MPlayer [32] or
the VLC [33] can be used by our Media Renderer to playback
media streams from a UPnP-AV Media Server. While the
VLC itself is already UPnP-AV enabled, the standard MPlayer
currently does not have support for UPnP-AV. Neither
of them is context-aware by default. Our generic Media
Renderer architecture allows to integrate the binary version
of any supported media player and hence turns it into UPnP-
AV enabled. This is achieved by a Player Wrapper inside the
Media Renderer, which delegates selected action requests to
the Media Renderer’s AV Transport, Rendering Control, and
Connection Manager services to a concrete player instance.
In our prototype implementation of the Media Renderer, the
MPlayer has been chosen as media player, and an MPlayer
Wrapper delegates all requests to a running MPlayer instance.
The wrapper is also responsible for returning all results of the
MPlayer instance to the Media Renderer’s calling services.

The ability to publish its context is added to the Media
Renderer by extending its Connection Manager service with
an additional GetContextInfo action. This approach has the
advantages that (i) it is the responsibility of the Control Point
to obtain the context from the Media Renderer, and (ii) the
Control Point is also able to control the additional traffic
overhead generated by context data. If context awareness
was instead realized by eventing, the additional generated
network load would have depended on the change frequency
of the evented context properties. Considering very dynamic
context properties such as Storages of the Device Profile,
UPnP-AV’s eventing mechanism may generate a large num-
ber of events during a Media Renderer session, since the
available memory in the local storage subsystem may often
change during a session. Although UPnP-AV provides the
concept of deferred eventing by the use of thresholds, the
eventing behavior is not desirable in many cases, since the
transmission of each event generates considerable additional
load on the network. On the other hand, the pull-based

Number of files/items

1000 2000 3000 4000 5000

(S
ec

on
ds

)

0

25
50

75

100

125

150

175

200
225

250

275

300

325

350

375

MediaTomb
Integrating Media Server

(a) Build times from file system versus integration times

Number of files/items

1000 2000 3000 4000 5000

(P
er

ce
n

t)

0
10
20
30
40
50
60
70
80
90

100

(b) Integration overhead

Figure 6: Overhead of integrating media items.

approach to receiving context information from the Media
Renderer has the drawback that the Control Point has to
periodically query the GetContextInfo action. But comparing
the advantages and the disadvantages of both approaches,
using an additional action is the right decision. Section 6.2.2
provides some performance figures about the costs of calling
this action on two different renderer devices.

5. THE CONTEXT-AWARE CONTROL POINT

Besides the Control Point implementation for metadata
integration in the Integrating Media Server presented in
Section 3, we also developed a full implementation of a
Context-aware Control Point [23]. This Control Point oper-
ates as dispatcher of media streams from a Media Server to
available Context-aware Media Renderers. Figure 5 illustrates
an action call sequence for initiating the rendering of a media
stream on a Context-aware Media Renderer.

First, the Control Point queries the Usage Context from
the Connection Manager service as soon as it connects to
a new Media Renderer. In step two, it queries the metadata



Roland Tusch et al. 7

Table 1: Test stream variations.

Variation Resolution Video bit rate Audio bit rate Total bit rate

V1 320× 240 200 kbps 64 kbps 264 kbps

V2 352× 208 464 kbps 64 kbps 528 kbps

V3 352× 208 500 kbps 64 kbps 564 kbps

V4 800× 480 200 kbps 64 kbps 264 kbps

Context-
aware

UPnP-AV
Media

Renderer

Context-
aware

UPnP-AV
Media

Renderer

UPnP-AV
Integrating

Media Server

Context-
aware

UPnP-AV
Control

Point

Renderer device
Nokia N770 (embedded Linux, Maemo)

Renderer device
Desktop PC (Linux, Ubuntu)

Control and content device
Tablet PC (Windows XP, SP2)

Wireless LAN 802.11 g

Fast Ethernet

Figure 7: UPnP-AV Media Renderer performance test setup.

item for the selected media item from the Integrating Media
Server. At this point, it has to be mentioned that our
Context-aware Control Point provides a Web-based user
interface for browsing and searching content. In the example
of Figure 5, the Media Renderer selects a media item via
this interface. Thus, this example illustrates a pull-based
unicast scenario. However, a push-based multicast scenario
can also be realized. In the third step, an internal Adaptation
Engine of the Control Point is used to initiate an adaptation
of the media item according to the given Usage Context.
This is achieved by incorporating our transcoding service
Transcoding Media Cache (TMC), which is able to transcode
and compose multimedia streams from various input to
various output formats [34]. The transcoding of the media
item does not take place at this step, it is only initiated by
the Adaptation Engine by rewriting the URL in the item’s
metadata to point to the TMC, and subsequently calling
the action SetAVTransportURI of the Media Renderers AV
Transport service with this rewritten URL as parameter
(step four). In step five, the Context-aware Media Renderer
requests the media item from the TMC, which in turn fetches
the original media item from the corresponding Media
Server (step six), and transcodes the media item according
to the transcoding parameters set by the Adaptation Engine
(step seven). Finally, the adapted stream is sent to the Media
Renderer by the use of an out-of-band (i.e., non-UPnP)

transport protocol. Steps six and seven can be omitted if the
TMC already has a cached version of the requested stream
for the given Usage Context.

6. PERFORMANCE EVALUATION

The following two subsections evaluate the performance
overhead costs of our approach to extend the UPnP-
AV Media Server MediaTomb with media item integration
capabilities and to implement a UPnP-AV Media Renderer
by the use of the non-UPnP-AV-enabled third party media
player MPlayer, respectively.

6.1. Integrating Media Server

Figures 6(a) and 6(b) illustrate the overhead of the inte-
gration of media items in the UPnP-AV Integrating Media
Server, compared to the construction of the content directory
from a file system as performed by the MediaTomb Media
Server. The comparison is based on five data sets containing
1000, 2000, 3000, 4000, and 5000 media items from a remote
MediaTomb Media Server and the same number of files
from a local file system, respectively [24]. As test items,
common media items and files from music albums were
used. The integration times were measured in an insulated
Fast Ethernet LAN.



8 International Journal of Digital Multimedia Broadcasting

Playback time (seconds)

1 3 5 7 9 11 13 15 17

C
P

U
u

ti
liz

at
io

n
(%

)

0

2

4

6

8

10

12

320× 240 264 kpbs
352× 208 528 kpbs

352× 208 564 kpbs
800× 480 264 kpbs

(a) Renderer

Playback time (seconds)

1 3 5 7 9 11 13 15 17

C
P

U
u

ti
liz

at
io

n
(%

)

0

10

20

30

40

50

60

70

320× 240 264 kpbs
352× 208 528 kpbs

352× 208 564 kpbs
800× 480 264 kpbs

(b) MPlayer

Figure 8: CPU utilization on the Nokia N770.

The integration overhead steadily increases with the
number of media items to retrieve from the remote Medi-
aTomb Media Server. While the integration overhead for
1000 items is rather low with about 7%, it increases to about
44% for 5000 items. Although the increase is not strictly
linear, it shows a linear gradient of 9.2% for 1000 additional
media items on average. This overhead increase is mainly due
to the protocol overhead imposed by UPnP-AV, accompanied
by the continuous UPnP-AV Browse actions, which have to
be called on the remote MediaTomb Media Server’s CDS to

Playback time (seconds)

1 3 5 7 9 11 13 15 17

R
A

M
u

ti
liz

at
io

n
(K

B
)

0

1

2

3

4

5

6
×103

320× 240 264 kpbs
352× 208 528 kpbs

352× 208 564 kpbs
800× 480 264 kpbs

(a) Renderer

Playback time (seconds)

1 3 5 7 9 11 13 15 17

R
A

M
u

ti
liz

at
io

n
(K

B
)

0

5

10

15

20

25

30

35

40
×103

320× 240 264 kpbs
352× 208 528 kpbs

352× 208 564 kpbs
800× 480 264 kpbs

(b) MPlayer

Figure 9: RAM utilization on the Nokia N770.

query for all available remote media items. This integration
overhead is acceptable for an adaptive domestic multimedia
system, where the number of media items is seldom higher
than 10000 media items (causing an integration overhead of
at least 92%) and the frequency of integration activities is
rather low.



Roland Tusch et al. 9

Playback time (seconds)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C
P

U
u

ti
liz

at
io

n
(%

)

0

5

10

15

20

25

30

35

40

Renderer
MPlayer

(a) Nokia 770

Playback time (seconds)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C
P

U
u

ti
liz

at
io

n
(%

)

0

1

2

3

4

5

6

7

Renderer
MPlayer

(b) Desktop PC

Figure 10: CPU utilization overhead.

6.2. Context-aware Media Renderer

6.2.1. CPU and RAM utilization overhead

The CPU and RAM utilization overhead of the context-
aware UPnP AV Media Renderer wrapping the MPlayer as
player instance was evaluated using the test setup depicted in
Figure 7.

On the right side, a Tablet PC running Windows XP
(SP2) is used as control and content device. This device runs
one instance of the Integrating UPnP-AV Media Server and
one instance of the Context-aware UPnP-AV Control Point.
In this test case, the media server does not integrate any
content from other media servers. Instead, its CDS simply
offers one system stream (i.e., a composed stream of one
video and one audio elementary stream) in four variations
regarding bit rate and resolution. Table 1 illustrates the
properties of these four stream variations. Note that even
though V4 has the highest resolution, it has the lowest bit
rate (actually equal to V1). Video elementary streams are

Playback time (seconds)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R
A

M
u

ti
liz

at
io

n
(K

B
)

0

2

4

6

8

10

12

14

16

18

×103

Renderer
MPlayer

(a) Nokia 770

Playback time (seconds)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R
A

M
u

ti
liz

at
io

n
(K

B
)

0

5

10

15

20

25

30
×103

Renderer
MPlayer

(b) Desktop PC

Figure 11: RAM utilization overhead.

encoded as MPEG-4 SimpleProfile@Level3, audio streams
are commonly encoded as MPEG-1@Layer3. All stream
variations have a duration of 18 seconds in playback time.
The context awareness of the Control Point is not used in
this test case either, since the video variations are already
prepared and available to the CDS of the Media Server.

On the left side of Figure 7, two renderer devices are
used for evaluating the performance of the Context-aware
UPnP-AV Media Renderer. The first renderer device is a
Nokia N770 Internet Tablet running the Internet Tablet OS
2006 (Maemo 2.2 [35]). It ships with a 252 MHz Texas
Instruments CPU, 64 MB RAM, 128 MB Flash memory, and
a widescreen display with a maximum video resolution
of 800 × 480 pixels. The second renderer device is a
common Desktop PC running Ubuntu Linux 6.1, with an



10 International Journal of Digital Multimedia Broadcasting

Intel Pentium 4 2.53 GHz processor and 128 MB RDRAM
installed, providing a maximum video resolution of 1920 ×
1200 pixels.

Before discussing the CPU and RAM utilization overhead
of the Context-aware Media Renderer, the CPU and RAM
utilization of both the Media Renderer and the MPlayer on
the Nokia N770 device are illustrated in Figures 8(a)-8(b)
and 9(a)-9(b), respectively. Figures 8(a) and 9(a) confirm
our expectation that the different stream variations do not
have considerable impacts on the CPU and RAM utilization
of the Media Renderer, since the Media Renderer is only
the UPnP-AV wrapper of the MPlayer and hence does not
directly operate on the media streams. In contrary, Figures
8(b) and 9(b) clearly show the impacts of the different stream
variations on the CPU and RAM utilization of the MPlayer,
respectively. While the stream variation with the highest
video resolution (V4) generates the highest load on the CPU,
the stream with the highest bit rate (V3) shows the highest
RAM usage peak. Whereas the latter result is not surprising,
the former is a bit unexpected since the CPU load of stream
variationV4 is about two times higher than those of the other
variations, although it has the smallest bit rate. This is due
to the higher computational requirements for larger video
resolutions especially during the double buffering and bit-
blitting operations.

The CPU and RAM utilization overhead of the Context-
aware Media Renderer on both renderer devices is illustrated
in Figures 10(a)-10(b) and 11(a)-11(b), respectively. The
overhead is calculated on averaged values of CPU and RAM
utilizations of all stream variations. Figure 10(a) shows a
mean CPU utilization overhead of the Media Renderer of
12.5% on the Nokia N770 device, compared to the average
CPU load generated by the MPlayer. On the Desktop PC, this
overhead accounts for only 1.3%, as shown in Figure 10(b).
Interestingly, the RAM utilization overhead shows a diamet-
rical result. While the RAM utilization overhead of the Media
Renderer on the Nokia N770 results in a mean value of 66.8%
(see Figure 11(a)), the overhead on the Desktop PC accounts
for 220%, as depicted in Figure 11(b). The latter result is
due to the used libupnp library, which uses more dynamically
linked libraries on the Maemo platform.

6.2.2. Response times to context queries

Figure 12 illustrates the response times (in millisecond) of
calls to the GetContextInfo action in a run of 20 subsequent
measurements on both, the Nokia N770 and the Desktop
PC renderer devices. It is obvious that the execution of
this action is much more expensive than other UPnP-AV
actions like SetAVTransportURI or Play, which take about
10 milliseconds on average. This is due to the dynamic
collection of context information each time this action is
called. On the Desktop PC the initial call to this action
results in a response time of about 1.8 seconds. This is the
time the renderer needs on this device when all context
information is queried by either directly invoking system
calls or by executing shell scripts. However, since some
context information is static and does not change during the
whole life cycle of the Renderer (like the manufacturer and

Test runs

1 3 5 7 9 11 13 15 17 19

R
es

po
n

se
ti

m
e

(m
s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Desktop PC
Nokia N770

Figure 12: Response times to GetContextInfo action calls.

the device model of the Device Profile), this static context
information is only queried once and cached for later action
calls. The caching of static context information results in a
significant response time reduction of about 80% to about
350 milliseconds.

In comparison to the Desktop PC, the Renderer on the
Nokia N770 device does not show this kind of slow start.
Although equipped with a much less powerful CPU and I/O
subsystem, the Renderer on the Nokia N770 starts faster than
that on the Desktop PC. This is due to the statical assignment
of some context properties like screen resolution, text and
voice input capabilities in the program code on the Nokia
N770. This, of course, results in a much faster collection of
the required context data.

7. CONCLUSIONS

This paper presented a novel approach of realizing context-
aware multimedia services for domestic multimedia systems
by using the Universal Plug and Play Audio Visual (UPnP-
AV) technology. Since UPnP-AV is designed for local area
networks, it is also suitable for multimedia multicasting
and broadcasting scenarios. However, standard UPnP-AV
does not provide means for tailoring multimedia content
to different context properties like the user, device, or
network profile. To overcome this drawback, an extension
to the Media Renderer has been realized which enables the
Control Point to periodically query context information
from the Media Renderers. This Usage Context information
in turn is used by the Control Point to customize media
streams from the Media Server by the use of a Transcoding
Media Cache (TMC). This approach allows to optimize the
multimedia content to the needs of the user with respect to
the constraints of her/his usage environment.

The second enhancement of this contribution to stan-
dard UPnP-AV is the development of an Integrating Media
Server which integrates media items from all other Media



Roland Tusch et al. 11

Servers available on the local area network. This integration
step provides a global view on all available multimedia
content in the UPnP-AV network and allows the Control
Point to perform fast queries on the available content.
Finally, performance evaluations regarding the overhead of
the integration step in the Integrating Media Server, as well as
CPU and RAM utilization overheads of the Media Renderer
implementation have shown that the overhead costs for
achieving the benefits are rather low.

ACKNOWLEDGMENT

This work was supported by the Austrian Science Fund
(FWF) under project L92-N13 (CAMUS: Context-Aware
Multimedia Services).

REFERENCES

[1] European Telecommunications Standards Institute, “Digital
Audio Broadcasting (DAB); Guide to DAB standards; Guide-
lines and Bibliography,” ETSI TR 101 495, January 2005.

[2] European Telecommunications Standards Institute, “Radio
Broadcasting Systems; Digital Audio Broadcasting (DAB) to
Mobile, Portable and Fixed Receivers,” ETSI EN 300 401, April
2000.

[3] European Telecommunications Standards Institute, “Digital
Video Broadcasting (DVB); A Guideline for the Use of DVB
Specifications and Standards,” ETSI TR 101 200, September
1997.

[4] European Telecommunications Standards Institute, “Digital
Video Broadcasting (DVB); Framing Structure, Channel Cod-
ing and Modulation for Digital Terrestrial Television,” ETSI
EN 300 744, June 2004.

[5] European Telecommunications Standards Institute, “Digital
Video Broadcasting (DVB); Transmission System for Hand-
held Terminals (DVB-H),” ETSI EN 302 304, June 2004.

[6] European Telecommunications Standards Institute, “Digital
Video Broadcasting (DVB); Multimedia Home Platform
(MHP) Specification 1.1.1,” ETSI TS 102 812 V1.2.2, August
2006.

[7] UPnP Implementers Corporation, UPnP AV Architec-
ture:0.83. White Paper, June 2002, http://www.upnp.org/
standardizeddcps/documents/UPnPAvArchtiecture0.83.pdf.

[8] Intel R&D, “Overview of UPnP AV Architecture: A Digi-
tal Media Distribution Technology for the Home,” White
Paper, July 2003, http://cache-www.intel.com/cd/00/00/21/87/
218764 218764.pdf.

[9] UPnP Implementers Corporation, UPnP Device Architecture
1.0. White Paper, 2006, http://www.upnp-ic.org/resources/
UPnP device architecture docs/UPnP-DeviceArchitecture-
v1 0-20060720.pdf.

[10] K.-J. Oh, M. Kim, J. S. Yoon, et al., “Multi-view video and
multi-channel audio broadcasting system,” in Proceedings of
the 3DTV Conference (3DTV-CON ’07), pp. 1–4, Kos Island,
Greece, May 2007.

[11] T. Lee, Y. J. Lee, J. H. Yoo, and D. Jang, “Personalized audio
broadcasting system through the terrestrial-DMB system,”
in Proceedings of the International Conference on Consumer
Electronics (ICCE ’07), pp. 1–2, Las Vegas, Nev, USA, January
2007.

[12] S. Panagiotakis and A. Alonistioti, “Context-aware composi-
tion of mobile services,” IT Professional, vol. 8, no. 4, pp. 38–

43, 2006.
[13] A. K. Dey, “Understanding and using context,” Personal

Ubiquitous Computing, vol. 5, no. 1, pp. 4–7, 2001.
[14] J. Köpke, R. Tusch, H. Hellwagner, and L. Böszörmenyi,

“Context-aware hoarding of multimedia content in a large-
scale tour guide scenario: a case study on scaling issues of
a multimedia tour guide,” in Proceedings of the International
Conference on Signal Processing and Multimedia Applications
(SIGMAP ’08), Porto, Portugal, July 2008.

[15] B. Schilit, N. Adams, and R. Want, “Context-aware computing
applications,” in Proceedings of the Workshop on Mobile
Computing Systems and Applications, pp. 85–90, Santa Cruz,
Calif, USA, December 1994.

[16] International Organization for Standardisation, “Information
technology—multimedia framework (MPEG-21)—part 7:
digital item adaptation,” Tech. Rep. ISO/IEC 21000-7, ISO,
2004.

[17] A. Vetro and C. Timmerer, “Digital item adaptation: overview
of standardization and research activities,” IEEE Transactions
on Multimedia, vol. 7, no. 3, pp. 418–426, 2005.

[18] A. Vetro, C. Timmerer, and S. Devillers, “Digital item
adapation—tools for universal multimedia access,” in The
MPEG-21 Book, chapter 7, pp. 243–280, John Wiley & Sons,
New York, NY, USA, 2006.

[19] OpenMobile Alliance, User Agent Profile - Approved Version
2.0, OMA-TS-UAProf-V2 0-20060206-A, February 2006.

[20] World Wide Web Consortium, “Composite Capability/Pre-
ference Profiles (CC/PP): Structure and Vocabularies 1.0.
W3C Recommendation,” 2004, http://www.w3.org/TR/CCPP-
struct-vocab/.

[21] World Wide Web Consortium, “Resource Description Frame-
work (RDF): Concepts and Abstract Syntax,” W3C Recom-
mendation, 2004, http://www.w3.org/TR/rdf-concepts/.

[22] M. Santner, R. Tusch, M. Kropfberger, L. Böszörmenyi,
and H. Hellwagner, “Ein Ortserkennungssystem für mobile
Touristenführer,” in Proceedings of the DACH Mobility, pp. 84–
98, Ottobrunn, Germany, October 2006.

[23] M. Ofner, Design and implementation of a context-aware
UPnP-AV control point, M.S. thesis, Institute of Information
Technology, University of Klagenfurt, Klagenfurt, Austria,
2008.

[24] M. Jakab, M. Kropfberger, M. Ofner, R. Tusch, H. Hellwag-
ner, and L. Böszörmenyi, “Metadata integration and media
transcoding in universal-plug-and-play (UPnP) enabled net-
works,” in Proceedings of the 15th Euromicro International Con-
ference on Parallel, Distributed and Network-Based Processing
(PDP ’07), pp. 363–372, Naples, Italy, February 2007.

[25] Intel R&D, “Designing a UPnP-AV MediaServer,” White
Paper, July 2003, http://cache-www.intel.com/cd/00/00/21/
87/218762 218762.pdf.

[26] UPnP Implementers Corporation, “ContentDirectory:1
Service Template Version 1.01,” White Paper, June 2002,
http://www.upnp.org/standardizeddcps/documents/Content-
Directory1.0.pdf.

[27] International Organization for Standardisation, “MPEG-21
part 2: digital item declaration language (DIDL),” Technology
Report ISO/IEC 21000-2, ISO, 2003.

[28] Dublin Core Metadata Initiative, “Dublin Core Metadata Ele-
ment Set, Version 1.1,” DCMI Recommendation, June 2008,
http://dublincore.org/schemas/xmls/qdc/2008/02/11/dc.xsd.

[29] The MediaTomb Project, MediaTomb. http://mediatomb.cc/.
[30] “PUPnP SourceForge Community. Portable SDK for UPnP

Devices (libupnp 1.6.6,” SourceForge.net Project, June 2008,

http://www.upnp.org/standardizeddcps/documents/UPnPAvArchtiecture0.83.pdf
http://www.upnp.org/standardizeddcps/documents/UPnPAvArchtiecture0.83.pdf
http://cache-www.intel.com/cd/00/00/21/87/218764_218764.pdf
http://cache-www.intel.com/cd/00/00/21/87/218764_218764.pdf
http://www.upnp-ic.org/resources/UPnP_device_architecture_docs/UPnP-DeviceArchitecture-v1_0-20060720.pdf
http://www.upnp-ic.org/resources/UPnP_device_architecture_docs/UPnP-DeviceArchitecture-v1_0-20060720.pdf
http://www.upnp-ic.org/resources/UPnP_device_architecture_docs/UPnP-DeviceArchitecture-v1_0-20060720.pdf
http://www.w3.org/TR/CCPP-struct-vocab/
http://www.w3.org/TR/CCPP-struct-vocab/
http://www.w3.org/TR/rdf-concepts/
http://cache-www.intel.com/cd/00/00/21/87/218762_218762.pdf
http://cache-www.intel.com/cd/00/00/21/87/218762_218762.pdf
http://www.upnp.org/standardizeddcps/documents/ContentDirectory1.0.pdf
http://www.upnp.org/standardizeddcps/documents/ContentDirectory1.0.pdf
http://dublincore.org/schemas/xmls/qdc/2008/02/11/dc.xsd
http://mediatomb.cc/


12 International Journal of Digital Multimedia Broadcasting

http://pupnp.sourceforge.net/.
[31] S. Kuchler, An extendable UPnP-AV media renderer, M.S.

thesis, Institute of Information Technology, University of
Klagenfurt, Klagenfurt, Austria, August 2007.

[32] The MPlayer Project, MPlayer. http://www.mplayerhq.hu/.
[33] The VideoLAN Project, VLC media player. http://www

.videolan.org/vlc/.
[34] M. Kropfberger, R. Tusch, M. Jakab, et al., “A multimedia-

based guidance system for various consumer devices,” in Pro-
ceedings of the 3rd International Conference on Web Information
Systems and Technologies (WEBIST ’07), pp. 83–90, Barcelona,
Spain, March 2007.

[35] Maemo Community, Maemo. White Paper, June 2008,
http://maemo.org/intro/white paper/.

http://pupnp.sourceforge.net/
http://www.mplayerhq.hu/
http://www.videolan.org/vlc/
http://www.videolan.org/vlc/
http://maemo.org/intro/white_paper/

	Introduction
	The notion of usage context
	Usage context profiles
	Adding context awareness to UPnP-AV

	The Integrating Media Server
	The Context-aware Media Renderer
	The Context-aware Control Point
	Performance evaluation
	Integrating Media Server
	Context-aware Media Renderer
	CPU and RAM utilization overhead
	Response times to context queries


	Conclusions
	Acknowledgment
	References

